文章编号: 0258-7025(2009)Supplement 1-0235-05

受圆孔衍射的超短脉冲贝塞耳-高斯光束的传输特性

邹其徽 朱红宇 段 茜

(西南石油大学理学院,四川 成都 610500)

摘要 基于衍射积分理论和复高斯函数展开法研究了超短脉冲贝塞耳-高斯光束通过圆孔光阑后在自由空间中的 传输特性,推导出解析的传输方程,并对传输方程进行分析讨论和数值计算分析,利用计算机软件进行绘图,给出 了归一化功率谱随横向距离的变化关系,横向光强分布和脉冲波形随截断参数的变化关系。

关键词 激光光学;传输特性;超短脉冲贝塞耳-高斯光束;圆孔光阑

中图分类号 O436; TN012 文献标识码 A doi: 10.3788/CJL200936s1.0235

Propagation Properties of Ultrashort Pulsed Bessel-Gaussian Beams Diffracted by an Circular Aperture

Zou Qihui Zhu Hongyu Duan Xi

(College of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China)

Abstract Based on the Fresnel diffraction integral, complex Gaussian function expansion and complex analytical signals method, the approximate analytical expression for ultrashort pulsed Bessel-Gaussian beams diffracted by an circular aperture in free space is derived. The normalized power spectrum, transversal intensity distribution, and optical pulse shape of ultrashort pulsed Bessel-Gaussian beam are studied in detail.

Key words laser optics; propagation property; ultrashort pulsed Bessel-Gaussian beam; circular aperture

1 引

言

从超短激光脉冲的产生到应用涉及超短脉冲在 自由空间、色散介质、光阑中的传输,研究结果对超 短脉冲的设计和应用及光通信、光互连和光信息编 码具有一定的意义^[1]。超短脉冲光束在真空、线性 色散介质等中的传输已进行了较为深入的研 究^[2,3]。贝塞耳-高斯脉冲光束由 Overfelt 于 1991 年提出,Porras 引入了几个光周期的贝塞耳-高斯光 脉冲,其空间参数与频率有关,许多学者对其进行了 真空中传输的研究。本文基于衍射积分理论和复高 斯函数展开法研究了超短脉冲贝塞耳-高斯光束通 过圆孔光阑后在自由空间中的传输特性,推导出解 析的传输方程,并对其光谱特性和时空特性进行了 计算分析和讨论。

2 超短脉冲贝塞耳-高斯光束通过圆 孔光阑后的传输方程 在柱坐标系下,设入射面 z=0 上有一旋转对称 超短脉冲贝塞耳-高斯光束[4]

$$E(r_0,0,\omega) = f(\omega)\mathbf{J}_0(\beta r_0)\exp\left(-\frac{r_0^2}{w_0^2}\right), \quad (1)$$

式中 β 为空间参数,是一与频率无关的常量, w_0 为束 腰宽度。J₀(•)表示第一类零阶贝塞耳函数, $f(\omega)$ 是 初始轴上的脉冲信号 f(t)的傅里叶变换脉冲光谱。

脉冲贝塞耳-高斯光束是亥姆霍兹(Helmholtz) 方程的傍轴近似解^[1,5],在旋转对称情况下,受圆孔 光阑衍射后传输至 *z* 平面处的光场可表示为:

$$E(r,z,\omega) = -\frac{i\omega}{cz} \exp\left(i\frac{\omega z}{c}\right) \exp\left(i\frac{\omega}{2cz}r^{2}\right) \times \int_{0}^{\infty} T(r_{0}) E(r_{0},0,\omega) \exp\left(\frac{i\omega}{2cz}r^{2}\right) \times J_{0}\left(\frac{\omega r}{cz}r_{0}\right) r_{0} dr_{0}, \qquad (2)$$

式中, $T(r_0)$ 为光阑函数^[6],

$$T(r_0) = \begin{cases} 1, & r_0 \leq a \\ 0, & \text{other} \end{cases}$$
(3)

(3)式可用有限个复高斯函数之和来逼近[7~9],即

基金项目:四川省教育厅青年基金(2006B058)资助课题。

作者简介:邹其徽(1968-),男,博士,教授,主要从事超短脉冲光束传输特性方面的研究。E-mail: qihui_zou@163.com

$$T(r_0) = \sum_{j=1}^{N} A_j \exp\left(-\frac{B_j}{a^2} r_0^2\right),$$
(4)

式中 A_i, B_i 为复高斯展开系数。

设余弦振荡的高斯脉冲为[5]

$$f(t) = A(t)\cos\omega_{\rm c}t = \exp\left[-\left(a_{\rm g}\,\frac{t}{T}\right)^2\right]\cos\omega_{\rm c}t,\tag{5}$$

式中 $a_g = \sqrt{2 \ln 2}$, T 是半峰全宽(FWHM)定义的脉冲宽度, ω_c 为载波频率。脉冲光谱为

$$f(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \exp(-i\omega t) dt = \frac{1}{2} \left[g(\omega - \omega_{c}) + g^{*} (-\omega - \omega_{c}) \right] = \frac{1}{2\sqrt{2p}} \left\{ \exp\left[-\frac{(\omega - \omega_{c})^{2}}{4p}\right] + \exp\left[-\frac{(\omega + \omega_{c})^{2}}{4p}\right] \right\},$$
(6)

式中 $g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(t) \exp(-ixt) dt, \ p = \frac{a_g^2}{T^2}.$

将(1)式,(4)式和(6)式代入(2)式中积分,并经推导化简得

$$E(r,z,\omega) = -\frac{1}{2\sqrt{2p}}\frac{\mathrm{i}\omega}{cz} \exp\left[\mathrm{i}\left(\frac{\omega z}{c} + \frac{\omega r^2}{2cz}\right)\right] \times \left\{ \exp\left[-\frac{(\omega - \omega_c)^2}{4p}\right] + \exp\left[-\frac{(\omega + \omega_c)^2}{4p}\right] \right\} \times \left[\sum_{j=1}^{N} A_j \frac{1}{2\xi^2} \exp\left(-\frac{c^2 z^2 \beta^2 + \omega^2 r^2}{4c^2 z^2 \xi^2}\right) I_0\left(\frac{\beta \omega}{4cz\xi^2}r\right)\right],$$

$$B_{i,j} = 1 \qquad \text{i}\omega \quad x \in \mathbb{R} \text{ and } i \neq \mathbb{R} \text{ and }$$

式中 $\xi^2 = \frac{B_j}{a^2} + \frac{1}{w_0^2} - \frac{i\omega}{2cz}, I_0(\cdot)$ 为零阶虚宗量贝塞耳函数。

超短脉冲贝塞耳-高斯光束通过圆孔光阑后在空间任意位置的功率谱为

$$|E(r,z,\omega)|^{2} = \frac{\omega^{2}}{8pc^{2}z^{2}} \left\{ \exp\left[-\frac{(\omega-\omega_{c})^{2}}{2p}\right] + \exp\left[-\frac{(\omega+\omega_{c})^{2}}{2p}\right] + 2\exp\left(-\frac{\omega^{2}+\omega_{c}^{2}}{2p}\right) \right\} \times \left| \sum_{j=1}^{N} A_{j} \frac{1}{2\xi^{2}} \exp\left(-\frac{c^{2}z^{2}\beta^{2}+\omega^{2}r^{2}}{4c^{2}z^{2}\xi^{2}}\right) I_{0}\left(\frac{\beta\omega}{4cz\xi^{2}}r\right) \right|^{2}.$$

$$(8)$$

对于几个光周期、甚至一个光周期的超短脉冲,使用复解析信号法,而不使用通常用的脉冲包络解,这 样可避免脉冲光束的空间奇异行为的出现,光场的复解析信号解 *E*⁺(*r*,*z*,*t*)可根据单边傅里叶逆变换得^[5]

$$E^{+}(r,z,t) = \int_{0}^{\infty} E(r,z,\omega) \exp(-i\omega t) d\omega = -\frac{1}{2\sqrt{2\rho}cz} \int_{0}^{\infty} i\omega \left\{ \exp\left[-\frac{(\omega-\omega_{c})^{2}}{4\rho}\right] + \exp\left[-\frac{(\omega+\omega_{c})^{2}}{4\rho}\right] \right\} \times \left[\sum_{j=1}^{N} A_{j} \frac{1}{2\xi^{2}} \exp\left(-\frac{c^{2}z^{2}\beta^{2}+\omega^{2}r^{2}}{4c^{2}z^{2}\xi^{2}}\right) I_{0}\left(\frac{\beta\omega}{4cz\xi^{2}}r\right) \exp(-i\omega t') d\omega \right],$$
(9)

式中 $t' = t - z/c - r^2/2cz$,为当地时间。因此,在传输过程中,其时空耦合、时间部分的演化与空间衍射效应有关。

受圆孔衍射的超短脉冲贝塞耳-高斯光束在任意传输面上的横向光强分布可根据巴塞伐定理求出,由 (8)得式

$$I(r,z) = \int_{-\infty}^{+\infty} |E(r,z,t)|^2 dt = \int_{-\infty}^{+\infty} |E(r,z,\omega)|^2 d\omega =$$

$$\frac{1}{8pc^2 z^2} \int_{-\infty}^{+\infty} \omega^2 \times \left\{ \exp\left[-\frac{(\omega-\omega_c)^2}{2p}\right] + \exp\left[-\frac{(\omega+\omega_c)^2}{2p}\right] + 2\exp\left(-\frac{\omega^2+\omega_c^2}{2p}\right) \right\} \times$$

$$\left| \sum_{j=1}^{N} A_j \frac{1}{2\xi^2} \exp\left(-\frac{c^2 z^2 \beta^2 + \omega^2 r^2}{4c^2 z^2 \xi^2}\right) I_0\left(\frac{\beta\omega}{4cz\xi^2}r\right) \right|^2 d\omega.$$
(10)

根据(10)式可计算受圆孔光阑衍射的脉冲贝塞耳-高斯光束在任意传输面上的横向光强大小。

36 卷

3 数值计算和结果分析

对于无光阑情形,截断参数 *δ*→∞,或在(2)式 中的被积光阑函数直接取 1,可得到无光阑情况下 的光场

$$E(r,z,\omega) = -\frac{1}{2\sqrt{2p}} \frac{i\omega}{cz} \exp\left[i\left(\frac{\omega z}{c} + \frac{\omega r^{2}}{2cz}\right)\right] \times \left\{ \exp\left[-\frac{(\omega - \omega_{c})^{2}}{4p}\right] + \exp\left[-\frac{(\omega + \omega_{c})^{2}}{4p}\right] \right\} \times \frac{1}{2\xi^{2}} \exp\left(-\frac{c^{2}z^{2}\beta^{2} + \omega^{2}r^{2}}{4c^{2}z^{2}\xi^{2}}\right) I_{0}\left(\frac{\beta\omega}{4cz\xi^{\prime 2}}r\right).$$
(11)

根据(11)式与(7)式在截断参数较大,例如 δ= 10 时进行数值计算,两式得到相同的计算结果。因 此,在截断参数足够大时,就与无光阑情形一致。

为了说明超短脉冲贝塞耳-高斯光束通过圆孔 光阑后在远场和近场的光谱特性和时间-空间域中 光强的变化,利用(8)式~(10)式进行了数值计算。

图 1 给出了受圆孔光阑衍射的超短脉冲贝塞耳 –高斯光束的归一化功率谱 $\frac{|E(r,z,\omega)|^2}{|E(r,z,\omega)|^2}$ 。计算参 数为 $w_0 = 0.5$ mm, $\omega_c = 2.36$ fs⁻¹, $\beta = 100$ mm⁻¹, z = 10 mm,r = 0, 0.2 mm, 0.4 mm, 0.6 mm, T = 2.66 fs。相应的计算结果见表 1。由图 1 可以看出, 随着横向距离的增加,受圆孔光阑衍射的超短脉冲 贝塞耳–高斯光束的功率谱取最大值时的角频率先 增大后逐渐减小。从表 1 中可以看出,r = 0, 0.2 mm, 0.4 mm 时 ω_{max} 逐 渐 增大,光谱 蓝 移;而 当 r = 0.6 mm, ω_{max} 已经开始下降,光谱红移。随着横向距 离的增大,光谱先蓝移再红移,对应的最大功率谱的 值急剧减小。

图 1 r=0,0.2 mm,0.4 mm,0.6 mm 时受圆孔衍射的超 短脉冲贝塞耳-高斯光束的归一化功率谱

Fig. 1 Normalized power spectrum $\frac{|E(r,z,\omega)|^2}{|E(r,z,\omega)|_{\max}^2}$ of ultrashort pulsed Bessel-Gaussian beams diffracted by an circular aperture for different values of the radial distance r=0, 0, 2 mm, 0, 4 mm and 0, 6 mm

- 表 1 r=0,0.2 mm,0.4 mm,0.6 mm 时超短脉冲贝塞耳-高 斯光束的最大功率谱及其相应角频率
- Table 1 Maximum power spectrum and its corresponding angular frequency of ultrashort pulsed Bessel-Gaussian beams for different values of the radial distance r=0, 0, 2 mm, 0, 4 mm and 0, 6 mm

r / mm	$\omega_{\rm max}/{ m fs}^{-1}$	$E(r,z,\omega)$ $\Big _{\max}^2$
0	2.239	0.530039
0.2	2.403	0.0254783
0.4	2.420	0.00352735
0.6	2.205	0.0000365154

图 2 给出了 δ =0.5,1.0,2.0 和 4.0 时受圆孔衍 射的超短脉冲贝塞耳-高斯光束的横向光强分布。计 算参数为 w_0 =0.5 mm, ω_c =2.36 fs⁻¹, β =100 mm⁻¹, z=10 mm,T=2.66 fs。由图 2 可以看出,横向光 强分布在 δ =0.5 时,光强分布的旁瓣峰较少,衍射 现象很明显,随着 δ 的增大,衍射逐渐减弱,当 δ >2 时与脉冲贝塞耳-高斯光束在自由空间中传输时某 横平面上的横向光强一致,即出现较多的旁瓣峰^[4]。

图 3 给出了对受圆孔衍射的超短脉冲贝塞耳-高 斯光束的时间波形的两种讨论,即讨论传输轴上取不 同截断参数和不同传输距离时波形的变化,计算参数 为 $\omega_0 = 0.5 \text{ mm}, \omega_c = 2.36 \text{ fs}^{-1}, \beta = 100 \text{ mm}^{-1}$ 。图 3 (a)给出了当 r=0 mm(轴上)时,截断参数 δ 分别取 0.5,1和2时间波形的比较,可看出 $\delta=1$ 和 $\delta=2$ 的 波形重合,而 δ =0.5的波形后沿出现震荡,因为 δ 较小时,衍射现象变明显,出现次峰。图 3(b)给出 了截断参数为 $\delta = 0.5$ 时,传输距离 z = 2 mm, 10 mm和 200 mm 情况的时间波形的讨论,由图可 看出近场和远场波形重合,而 z=10 mm 的波形后 沿出现震荡。也即在截断参数 δ 较小时,在不同的 传输距离上,其脉冲波形不相同,在某些位置处脉冲 波形还出现震荡,这是由于时间和空间耦合的原因。 初始位置处仅是高斯脉冲,在传输中受到贝塞耳函 数的空间调制的结果。图 3(c)给出了当参数为 $\delta =$ 2时,传输距离 z=2 mm,10 mm 和 20 mm 情况的 时间波形的讨论,由图可看出随传输距离增加,没有 出现脉冲前、后沿震荡,但出现脉冲波形展宽和脉冲 后沿下降变缓的情形。截断参数δ较大时,光场受 光阑的衍射效应减弱,光脉冲波形变化相对较 $h^{[10,11]}$

图 2 δ=0.5,1.0,2.0 和 4.0 时受圆孔衍射的超短脉冲贝塞耳-高斯光束的横向光分布

Fig. 2 Transversal intensity distributions of ultrashort pulsed Bessel-Gaussian beams for different values of truncation parameter $\delta = 0.5$, 1.0, 2.0 and 4.0

图 3 受圆孔衍射的超短脉冲贝塞耳-高斯光束在传输轴上的时间波形

Fig. 3 On-axis temporal forms of ultrashort pulsed Bessel-Gaussian beams diffracted by a circular aperture.

The calculation parameters are seen in the text

4 结 论

基于衍射积分理论、复高斯函数展开法和复解 析信号法研究超短脉冲贝塞耳-高斯光束通过圆孔 光阑后在自由空间的传输,经过严谨、繁琐的数学推 导,导出其在自由空间的近似解析传输方程,讨论了 截断参数等对光束在时间-空间域中的光强变化、归 一化功率谱和横向光强分布的影响。结果表明,随 着横向距离的增大,光谱先蓝移再红移。随着截断 参数的增大,截断参数较小时,脉冲波形后沿出现 震荡,截断参数较大时,随传输距离增加,脉冲波形 展宽和脉冲后沿下降变缓。

参考文献

- Lü Baida. Laser Optics (Beam Characterization, Propagation and Transformation, Resonator Technology and Physics) [M]. Beijing: Higher Education Press, 2003. 210~221
 吕百达. 激光光学(光束描述、传输变换与光腔技术物理)[M]. 北京:高等教育出版社, 2003. 210~221
- 2 Zou Qihui, Lü Baida. Propagation of ultrashort chirped pulsed Gaussian beams in free space [J]. *Chinese J. Lasers*, 2006, **33**(4): 499~503

邹其徽,吕百达. 啁啾脉冲高斯光束在自由空间的传输[J]. 中国 激光, 2006, **33**(4): 499~503

3 Wang Li, Han Xiuyou. Ultra-short Gaussian pulse expansion and deformation by high-order group velocity dispersion [J]. Acta

Optica Sinica, 2007, 27(1): 138~142

王 丽,韩秀友.高阶群速度色散引起的高斯超短脉冲宽度的展宽和形变[J].光学学报,2007,**27**(1):138~142

4 Zou Qihui, Lü Baida. Propagation properties of ultrashort pulsed Bessel-Gauss beams in free space[J]. *High Power Laser and Particle Beams*, 2005, **17**(12): 1769~1772 邹其徽,吕百达. 超短脉冲贝塞耳-高斯光束在自由空间的远场

³¹ 升版, 6 日 达. 超显标评贝 盔 4 ⁻ 向别 元 米 任 日 田 至 向 的 远 级 特性[J]. 强激光与 粒子 束, 2005, **17**(12): 1769~1772

5 Zou Qihui, Lü Baida. The far-field properties of ultrashort pulsed beams with constant waist width in free space[J]. Acta Physica Sinica, 2005, **55**(12): 2149~2154

邹其徽,吕百达. 等束宽超短脉冲光束的远场特性[J]. 物理学报,2005,**55**(12):2149~2154

6 Yuanjie Yang, Qihui Zou, Yude Li. Near-field anomalous spectral behavior in diffraction of a Gaussian pulsed beam from an annular aperture[J]. Appl. Opt., 2007, 46(21): 4667~4673

- 7 J. J. Wen, M. A. Breazeale. A different beam field expressed as a superposition of Gaussian beams [J]. J. Acoust. Soc. Am., 1988, 83:1752~1756
- 8 H. Mao, D. Zhao. Different models for a hard-aperture function and corresponding approximate analytical propagation equations of a Gaussian beam through an apertured optical system[J]. J. Opt. Soc. Am. A, 2005, 22(4): 647~653
- 9 J. Gu, D. Zhao. Propagation characteristics of Gaussian beams through a paraxial ABCD optical system with an annular aperture [J]. J. Mod. Opt., 2005, 52(8): 1065~1072
- 10 P. L. Overfelt. Bessel-Gauss pulse[J]. Phys. Rev. A, 1991, 44(6): 3941~3947
- 11 M. A. Porrras, R. Borghi, M. Santarsieroon. Optical-cycle Bessel-Gauss pulsed beams in free space [J]. *Phys. Rev. E*, 2000, **62**(4): 5729~5737